1-of-2 non-inverting demultiplexer with 3-state deselected output

Rev. 2 — 9 December 2016

Product data sheet

1. General description

The 74LVC1G18-Q100 is a 1-of-2 non-inverting demultiplexer with a 3-state output. The device buffers the data on input pin A. It is passed to either output 1Y or 2Y, depending on whether the state of the select input (pin S) is LOW or HIGH. Input can be driven from either 3.3 V or 5 V devices. These features allow the use of these devices in a mixed 3.3 V and 5 V environment.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 1.65 V to 5.5 V
- 5 V tolerant input/output for interfacing with 5 V logic
- High noise immunity
- Complies with JEDEC standard:
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- ± 24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- SOT363 and SOT457 package

nexperia

3. Ordering information

Table 1. Ordering information								
Type number	Package							
	Temperature range	Name	Description	Version				
74LVC1G18GW-Q100	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363				
74LVC1G18GV-Q100	–40 °C to +125 °C	SC-74	plastic surface-mounted package (TSOP6); 6 leads	SOT457				

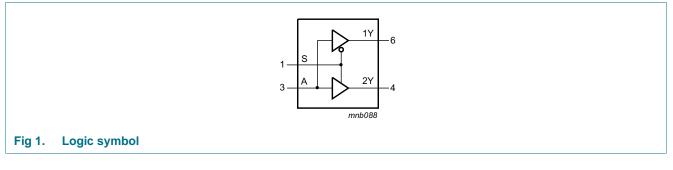
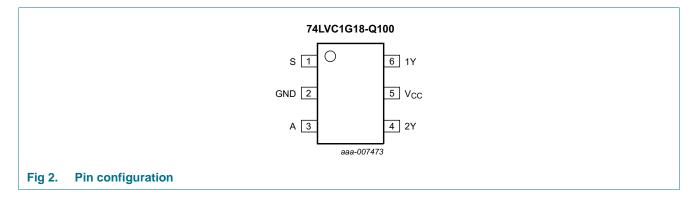

4. Marking

Table 2.	Marking
----------	---------

Type number	Marking code ^[1]
74LVC1G18GW-Q100	VW
74LVC1G18GV-Q100	V18


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.1 Pinning

74LVC1G18_Q100

6.2 Pin description

Symbol	Pin	Description
S	1	data select
GND	2	ground (0 V)
A	3	data input
2Y	4	data output
V _{CC}	5	supply voltage
1Y	6	data output

7. Functional description

Table 4. Function table^[1]

Input C		Output		
S	Α	1Y	2Y	
L	L	L	Z	
L	Н	Н	Z	
Н	L	Z	L	
Н	Н	Z	Н	

[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state

8. Limiting values

Table 5.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
VI	input voltage		<u>[1]</u>	-0.5	+6.5	V
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V		-	±50	mA
Vo	output voltage	Active mode	<u>[1][2]</u>	-0.5	V _{CC} + 0.5	V
		Power-down mode	<u>[1][2]</u>	-0.5	+6.5	V
lo	output current	$V_{O} = 0 V$ to V_{CC}		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	<u>[3]</u>	-	300	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] When $V_{CC} = 0 V$ (Power-down mode), the output voltage can be 5.5 V in normal operation.

[3] For SC-74 and SC-88 packages: above 87.5 $^\circ$ C the value of P_{tot} derates linearly with 4.0 mW/K.

9. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		1.65	-	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	Active mode	0	-	V _{CC}	Vo
		V _{CC} = 0 V; Power-down mode	0	-	5.5	V
T _{amb}	ambient temperature		-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V_{CC} = 1.65 V to 2.7 V	-	-	20	ns/V
		$V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}$	-	-	10	ns/V

Table 6. Recommended operating conditions

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
T _{amb} = –	40 °C to +85 °C					-
VIH	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7	-	-	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2.0	-	-	V
		V_{CC} = 4.5 V to 5.5 V	$0.7\times V_{CC}$	-	-	V
VIL	LOW-level input voltage		V			
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-	0.7	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	0.8	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	- - V - - V - - V - - V - 0.35 × V_{CC} V - 0.35 × V_{CC} V - 0.3 × V_{CC} V - 0.3 × V_{CC} V - 0.3 × V_{CC} V - - V - - V - - V - - V - - V - - V - - V - - V - 0.1 V - 0.3 V - 0.45 V - 0.45 V	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$			V V V - 0.35 × V _{CC} V - 0.35 × V _{CC} V - 0.3 × V _{CC} V 	
		I_{O} = $-100~\mu\text{A};~V_{CC}$ = 1.65 V to 5.5 V	$V_{CC}-0.1$	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	$\begin{array}{c c} & - & & \\ & - & & \\ & - & & \\ & 0.35 \times V_{CC} \\ & 0.7 \\ & 0.8 \\ & 0.3 \times V_{CC} \\ & & \\ & - & \\ & - & \\ & - & \\ & - & \\ & - & \\ & - & \\ & - & \\ & - & \\ & 0.1 \\ & 0.45 \\ & 0.3 \\ & 0.4 \\ & 0.55 \\ \end{array}$	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	$= 2.3 \vee to 2.7 \vee$ 1.7 $ = 2.7 \vee to 3.6 \vee$ 2.0 $ = 4.5 \vee to 5.5 \vee$ $0.7 \times V_{CC}$ $ = 1.65 \vee to 1.95 \vee$ $ 0.35 \times V_{CC}$ $= 2.3 \vee to 2.7 \vee$ $ 0.35 \times V_{CC}$ $= 2.3 \vee to 2.7 \vee$ $ 0.38$ $= 4.5 \vee to 3.6 \vee$ $ 0.8$ $= 4.5 \vee to 5.5 \vee$ $ 0.3 \times V_{CC}$ $= -100 \mu A; \vee_{CC} = 1.65 \vee to 5.5 \vee$ $V_{CC} - 0.1$ $ = -100 \mu A; \vee_{CC} = 1.65 \vee to 5.5 \vee$ $V_{CC} - 0.1$ $ = -4 \text{ mA}; \vee_{CC} = 1.65 \vee to 5.5 \vee$ 1.2 $ = -4 \text{ mA}; \vee_{CC} = 2.3 \vee$ 1.9 $ = -4 \text{ mA}; \vee_{CC} = 2.3 \vee$ 1.9 $ = -24 \text{ mA}; \vee_{CC} = 2.3 \vee$ 2.3 $ = -32 \text{ mA}; \vee_{CC} = 3.0 \vee$ 2.3 $ = -32 \text{ mA}; \vee_{CC} = 1.65 \vee to 5.5 \vee$ $ = 100 \mu A; \vee_{CC} = 1.65 \vee to 5.5 \vee$ $ = 100 \mu A; \vee_{CC} = 1.65 \vee to 5.5 \vee$ $ = 100 \mu A; \vee_{CC} = 1.65 \vee$ $ = 100 \mu A; \vee_{CC} = 1.65 \vee$ $ = 100 \mu A; \vee_{CC} = 1.65 \vee$ $ = 100 \mu A; \vee_{CC} = 1.65 \vee$ $ = 2.4 \text{ mA}; \vee_{CC} = 2.3 \vee$ $ = 2.4 \text{ mA}; \vee_{CC} = 3.0 \vee$ $ = 2.4 \text{ mA}; \vee_{CC} = 3.0 \vee$ $ = 2.4 \text{ mA}; \vee_{CC} = 3.0 \vee$ $ = 2.4 \text{ mA}; \vee_{CC} = 3.0 \vee$	V		
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$		V		
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_0 = 100 µA; V_{CC} = 1.65 V to 5.5 V	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	-	0.3	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	$\begin{array}{c c} & & - & \\ & & - & \\ & & & \\ &$	V
		$I_{O} = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	V
		I _O = 32 mA; V _{CC} = 4.5 V	-	-	0.55	V

1-of-2 non-inverting demultiplexer with 3-state deselected output

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
l _l	input leakage current	$V_{CC} = 0 V$ to 5.5 V; $V_I = 5.5 V$ or GND	-	±0.1	±1	μA
I _{OZ}	OFF-state output current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 3.6 \; V; \; V_{I} = V_{IH} \; \text{or} \; V_{IL}; \\ V_{O} = 5.5 \; V \; \text{or} \; GND \end{array}$	-	±0.1	±2	μA
I _{OFF}	power-off leakage current	$V_{CC} = 0 \text{ V}; \text{ V}_{I} \text{ or } \text{ V}_{O} = 5.5 \text{ V}$	-	±0.1	±2	μA
I _{CC}	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to } 5.5 V; I_{O} = 0 \text{ A}$	-	0.1	4	μA
Δl _{CC}	additional supply current	per pin; V_{CC} = 2.3 V to 5.5 V; V _I = V _{CC} - 0.6 V; I _O = 0 A	-	5	500	μA
CI	input capacitance	V_{CC} = 3.3 V; V_{I} = GND to V_{CC}	-	2.5	-	pF
T _{amb} = -	40 °C to +125 °C		I			
V _{IH}	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7	-	-	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	2.0	-	-	V
		V_{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-	0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	V
		V_{CC} = 4.5 V to 5.5 V	-	-	$0.3\times V_{CC}$	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		I_{O} = -100 μ A; V _{CC} = 1.65 V to 5.5 V	$V_{CC} - 0.1$	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	0.95	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.7	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	1.9	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.0	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.4	-	0.1 ± 2 μ 0.1 4 μ 5 500 μ 5 500 μ 2.5 - μ - 0.35 × V_{CC} μ - 0.35 × V_{CC} μ - 0.3 × V_{CC} μ - 0.3 × V_{CC} μ - - μ - 0.1 μ - 0.45 μ - 0.80 μ - 0.80 μ - 1 μ - ±2 μ - 4 μ <td>V</td>	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 100 μ A; V _{CC} = 1.65 V to 5.5 V	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.70	V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	-	0.60	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.80	V
		$I_{O} = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.80	V
l _l	input leakage current	$V_{CC} = 0$ V to 5.5 V; $V_{I} = 5.5$ V or GND	-	-	±1	μA
I _{OZ}	OFF-state output current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 3.6 \; V; \; V_{I} = V_{IH} \; \text{or} \; V_{IL}; \\ V_{O} = 5.5 \; V \; \text{or} \; GND \end{array}$	-	-	±2	μA
I _{OFF}	power-off leakage current	$V_{CC} = 0 \text{ V}; \text{ V}_{I} \text{ or } \text{ V}_{O} = 5.5 \text{ V}$	-	-	±2	μA
I _{CC}	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to } 5.5 V; I_{O} = 0 \text{ A}$	-	-	4	μA
ΔI_{CC}	additional supply current	per pin; $V_{CC} = 2.3 \text{ V}$ to 5.5 V; $V_I = V_{CC} - 0.6 \text{ V}$; $I_O = 0 \text{ A}$	-	-	500	μA

Table 7. Static characteristics ... continued

[1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

1-of-2 non-inverting demultiplexer with 3-state deselected output

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit, see Figure 5.

Symbol	Parameter	Conditions		-40	°C to +85	S °C	–40 °C to +125 °C		Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation delay	A to nY; see Figure 3	[2]						
		V _{CC} = 1.65 V to 1.95 V		1.0	5.1	10.0	1.0	12.5	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.0	3.2	5.5	0.5	6.9	ns
		V _{CC} = 2.7 V		1.0	3.2	5.4	0.5	6.8	ns
		V _{CC} = 3.0 V to 3.6 V		1.0	3.0	5.0	0.5	6.3	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$		1.0	2.3	3.8	0.5	4.8	ns
t _{en}	enable time	S to nY; see Figure 3	<u>[3]</u>						
		V _{CC} = 1.65 V to 1.95 V		1.0	5.8	11.0	1.0	13.8	ns
		V_{CC} = 2.3 V to 2.7 V		1.0	3.6	6.2	0.5	7.8	ns
		V _{CC} = 2.7 V		1.0	3.6	6.0	0.5	7.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.1	5.2	0.5	6.5	ns
		V_{CC} = 4.5 V to 5.5 V		1.0 5.1 10.0 1.0 12.5 ns 1.0 3.2 5.5 0.5 6.9 ns 1.0 3.2 5.4 0.5 6.8 ns 1.0 3.2 5.4 0.5 6.3 ns 1.0 3.0 5.0 0.5 6.3 ns 1.0 2.3 3.8 0.5 4.8 ns 1.0 2.3 3.8 0.5 7.8 ns 1.0 5.8 11.0 1.0 13.8 ns 1.0 3.6 6.2 0.5 7.8 ns 1.0 3.6 6.0 0.5 7.5 ns 1.0 3.6 6.0 0.5 7.5 ns 1.0 3.6 6.0 0.5 4.5 ns 1.0 2.4 3.6 0.5 4.5 ns 1.0 2.7 5.3 0.5 6.6 ns 1.0	ns				
t _{dis}	disable time	S to nY; see Figure 3	<u>[4]</u>						
		V _{CC} = 1.65 V to 1.95 V		1.0	4.8	9.0	1.0	11.3	ns
		V_{CC} = 2.3 V to 2.7 V		1.0	2.7	5.3	0.5	6.6	ns
		V _{CC} = 2.7 V		1.0	3.5	5.2	0.5	6.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.3	4.9	0.5	6.1	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$		0.5	2.2	3.3	0.5	4.1	ns
C _{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC} ; $V_{CC} = 3.3 V$	<u>[5]</u>	-	28.8	-	-	-	pF

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

[2] t_{pd} is the same as t_{PLH} and t_{PHL}

[3] t_{en} is the same as t_{PZH} and t_{PZL}

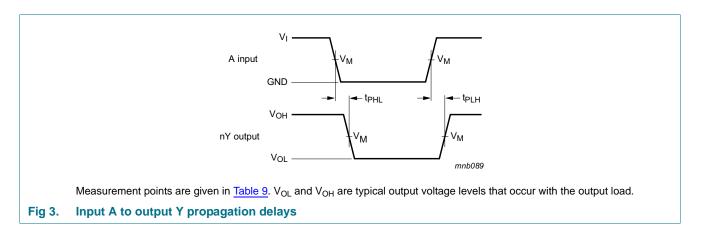
[4] t_{dis} is the same as t_{PLZ} and t_{PHZ}

[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \sum (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

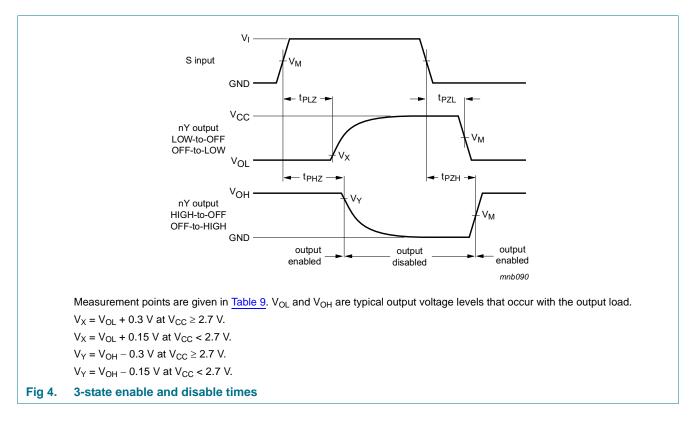
 $f_i = input frequency in MHz;$

 f_o = output frequency in MHz; C_L = output load capacitance in pF;


 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.


1-of-2 non-inverting demultiplexer with 3-state deselected output

12. AC waveforms

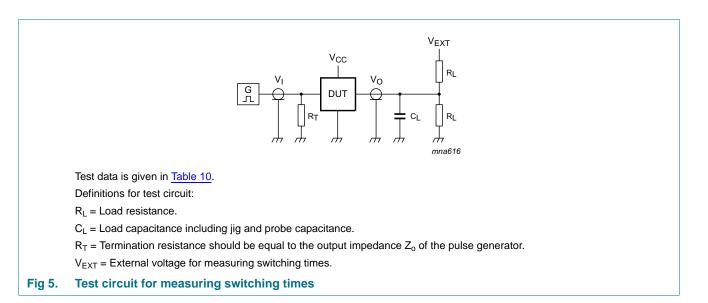


Table 9.Measurement points

V _{cc}	V _M	Input	Input				
		VI	$t_r = t_f$				
1.65 V to 1.95 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.0 ns				
2.3 V to 2.7 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.0 ns				
2.7 V	1.5 V	2.7 V	≤ 2.5 ns				
3.0 V to 3.6 V	1.5 V	2.7 V	≤ 2.5 ns				
4.5 V to 5.5 V	$0.5 imes V_{CC}$	V _{CC}	≤ 2.5 ns				

1-of-2 non-inverting demultiplexer with 3-state deselected output

Table 10. Test data

V _{CC}	Input		Load	Load		V _{EXT}		
	VI	$\mathbf{t}_{r} = \mathbf{t}_{f}$	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
1.65 V to 1.95 V	V _{CC}	\leq 2.0 ns	30 pF	1 kΩ	open	GND	$2 \times V_{CC}$	
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open	GND	$2 \times V_{CC}$	
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND	6 V	
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND	6 V	
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open	GND	$2 \times V_{CC}$	

1-of-2 non-inverting demultiplexer with 3-state deselected output

13. Package outline

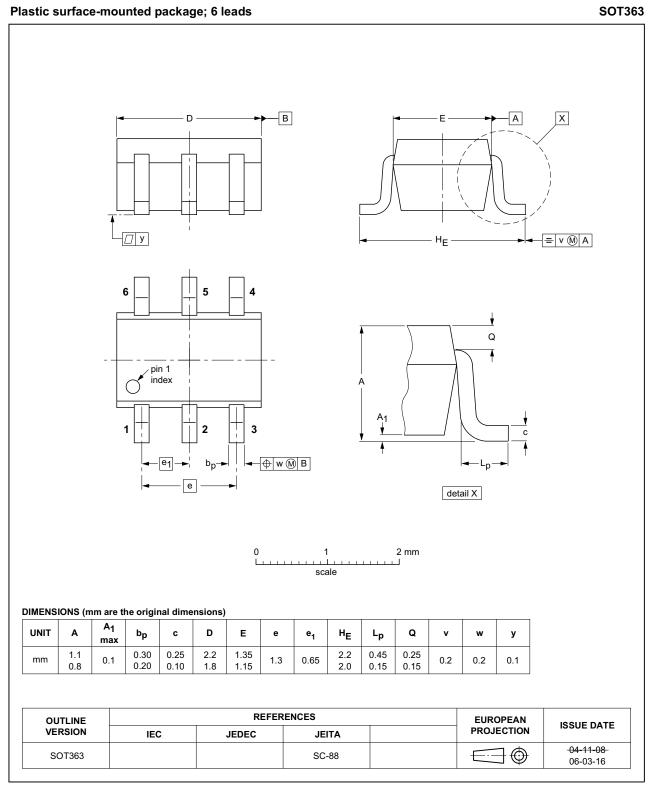
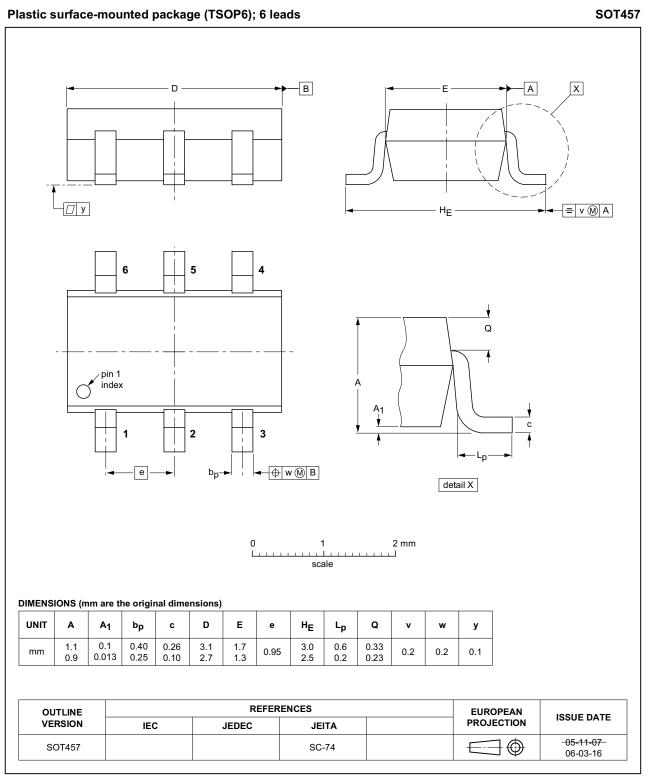



Fig 6. Package outline SOT363 (SC-88)

All information provided in this document is subject to legal disclaimers.

74LVC1G18_Q100

1-of-2 non-inverting demultiplexer with 3-state deselected output

Fig 7. Package outline SOT457 (SC-74)

All information provided in this document is subject to legal disclaimers.

74LVC1G18_Q100

14. Abbreviations

Table 11. Abbreviations				
Acronym	Description			
CMOS	Complementary Metal Oxide Semiconductor			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
НВМ	Human Body Model			
MM	Machine Model			
MIL	Military			
TTL	Transistor-Transistor Logic			

15. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74LVC1G18_Q100 v.2	20161209	Product data sheet	-	74LVC1G18_Q100 v.1	
Modifications:	• <u>Table 7</u> : The maximum limits for leakage current and supply current have changed.				
74LVC1G18_Q100 v.1	20130516	Product data sheet	-	-	

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive

applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

1-of-2 non-inverting demultiplexer with 3-state deselected output

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Nexperia

74LVC1G18-Q100

1-of-2 non-inverting demultiplexer with 3-state deselected output

18. Contents

General description 1
Features and benefits 1
Ordering information 2
Marking 2
Functional diagram 2
Pinning information 2
Pinning 2
Pin description 3
Functional description 3
Limiting values 3
Recommended operating conditions 4
Static characteristics 4
Dynamic characteristics 6
AC waveforms
Package outline
Abbreviations 11
Revision history 11
Legal information
Data sheet status 12
Definitions 12
Disclaimers
Trademarks 13
Contact information 13
Contents 14

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia: 74LVC1G18GV-Q100H 74LVC1G18GW-Q100H