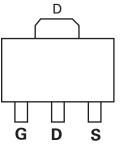
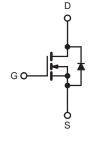


## N-Channel 30-V (D-S) MOSFET

| PRODUCT SUMMARY     |                                  |                                 |                       |  |  |  |  |
|---------------------|----------------------------------|---------------------------------|-----------------------|--|--|--|--|
| V <sub>DS</sub> (V) | R <sub>DS(on)</sub> (Ω)          | I <sub>D</sub> (A) <sup>a</sup> | Q <sub>g</sub> (Typ.) |  |  |  |  |
| 30                  | 0.022 at V <sub>GS</sub> = 4.5 V | 6.8                             | 10 nC                 |  |  |  |  |
| 30                  | 0.027 at V <sub>GS</sub> = 2.5 V | 6.0                             | - 10 nC               |  |  |  |  |


#### **FEATURES**


- · Halogen-free
- TrenchFET<sup>®</sup> Power MOSFET

#### **APPLICATIONS**

· Load Switches for Portable Devices







N-Channel MOSFET

| <b>ABSOLUTE MAXIMUM RATINGS</b> $T_A = 25 \text{ °C}$ , unless otherwise noted |                                   |                |                        |     |  |  |  |  |
|--------------------------------------------------------------------------------|-----------------------------------|----------------|------------------------|-----|--|--|--|--|
| Parameter                                                                      | Symbol                            | Limit          | Unit                   |     |  |  |  |  |
| Drain-Source Voltage                                                           | V <sub>DS</sub>                   | 30             | V                      |     |  |  |  |  |
| Gate-Source Voltage                                                            | V <sub>GS</sub>                   | ± 20           | V                      |     |  |  |  |  |
|                                                                                | T <sub>C</sub> = 25 °C            |                | 6.8 <sup>a</sup>       |     |  |  |  |  |
| Continuous Drain Current ( $T_1 = 150 \ ^{\circ}C$ )                           | T <sub>C</sub> = 70 °C            |                | 6 <sup>a</sup>         |     |  |  |  |  |
| Continuous Drain Current (1) = 150°C)                                          | T <sub>A</sub> = 25 °C            |                | 6.8 <sup>a, b, c</sup> |     |  |  |  |  |
|                                                                                | T <sub>A</sub> = 70 °C            |                | 6 <sup>a, b, c</sup>   | A   |  |  |  |  |
| Pulsed Drain Current                                                           | I <sub>DM</sub>                   | 30             |                        |     |  |  |  |  |
| Continuous Source-Drain Diode Current                                          | T <sub>C</sub> = 25 °C            | I <sub>S</sub> | 5.2                    |     |  |  |  |  |
| Continuous Source-Drain Diode Current                                          | T <sub>A</sub> = 25 °C            | 'S             | 2.1 <sup>b, c</sup>    |     |  |  |  |  |
|                                                                                | T <sub>C</sub> = 25 °C            |                | 6.3                    |     |  |  |  |  |
| Maximum Power Dissipation                                                      | T <sub>C</sub> = 70 °C            | P <sub>D</sub> | 4                      | w   |  |  |  |  |
| Maximum Power Dissipation                                                      | T <sub>A</sub> = 25 °C            | 'D             | 2.5 <sup>b, c</sup>    | vv  |  |  |  |  |
|                                                                                | T <sub>A</sub> = 70 °C            |                | 1.6 <sup>b, c</sup>    |     |  |  |  |  |
| Operating Junction and Storage Temperatur                                      | T <sub>J</sub> , T <sub>stg</sub> | - 55 to 150    |                        |     |  |  |  |  |
| Soldering Recommendations (Peak Temper                                         | ature) <sup>e, f</sup>            |                | 260                    | U U |  |  |  |  |

#### THERMAL RESISTANCE BATINGS

| Parameter                                      | Symbol Typical |                   | Maximum | Unit |      |  |  |  |  |
|------------------------------------------------|----------------|-------------------|---------|------|------|--|--|--|--|
| Maximum Junction-to-Ambient <sup>a, c, d</sup> | t ≤ 5 s        | R <sub>thJA</sub> | 40      | 50   | °C/W |  |  |  |  |
| Maximum Junction-to-Foot (Drain)               | Steady State   | R <sub>thJF</sub> | 15      | 20   | 0/11 |  |  |  |  |

Notes:

a. Package limited, T<sub>C</sub> = 25 °C.
b. Surface Mounted on 1" x 1" FR4 board.

c. t = 10 s.

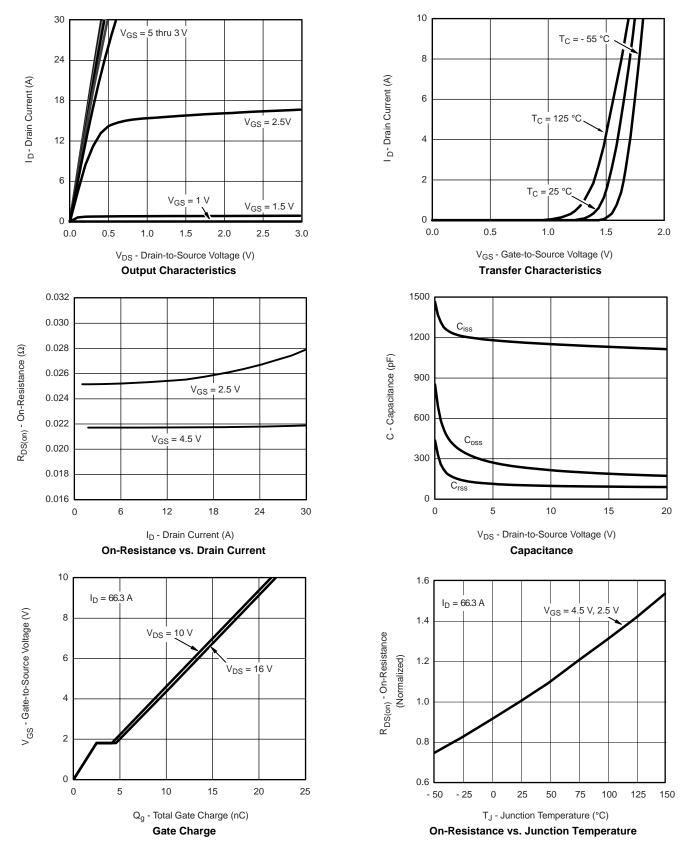
d. Maximum under Steady State conditions is 95 °C/W.

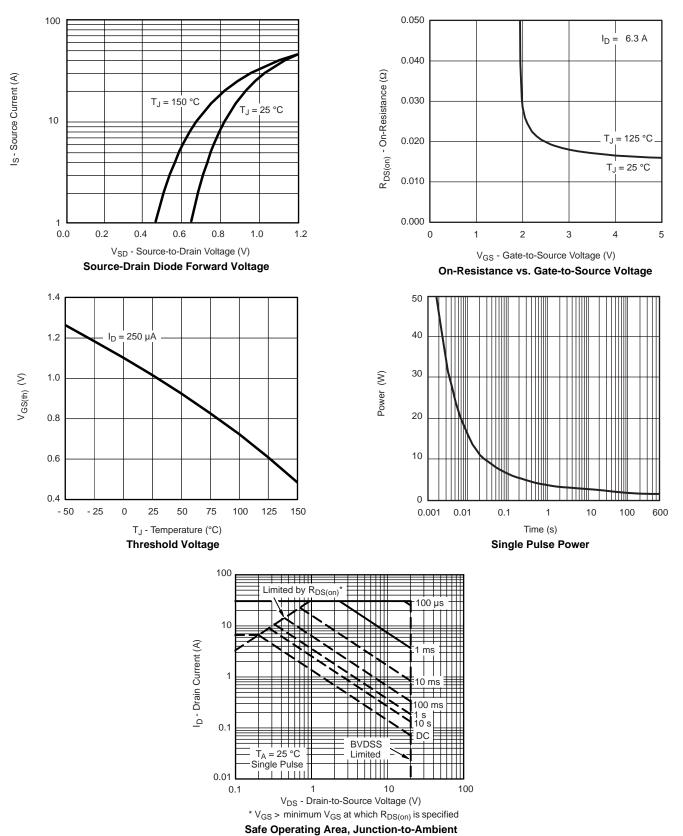
e. See Reliability Manual for profile. The ChipFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

f. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.

| Symbol                  | Test Conditions                                                                                   | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Тур.                                                   | Max.                                                   | Unit                                                   |
|-------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
|                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                        |                                                        |
|                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                      | 1                                                      | 1                                                      |
|                         | $V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                        | V                                                      |
| $\Delta V_{DS}/T_{J}$   | I <sub>D</sub> = 250 μA                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                     |                                                        |                                                        |
| $\Delta V_{GS(th)}/T_J$ |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 4.0                                                  |                                                        | mV/°C                                                  |
| V <sub>GS(th)</sub>     | $V_{DS} = V_{GS}$ , $I_D = 250 \ \mu A$                                                           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | 1.5                                                    | V                                                      |
| I <sub>GSS</sub>        | $V_{DS} = 0 V, V_{GS} = \pm 20 V$                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | ± 100                                                  | nA                                                     |
| <b> </b>                | $V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | 1                                                      | μA                                                     |
| 'DSS                    | $V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | 10                                                     |                                                        |
| I <sub>D(on)</sub>      | $V_{DS} \geq 5$ V, $V_{GS}$ = 4.5 V                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                        | Α                                                      |
| P                       | $V_{GS} = 4.5 \text{ V}, I_{D} = 6.3 \text{ A}$                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.022                                                  | 0.033                                                  | Ω                                                      |
| R <sub>DS(on)</sub>     | $V_{GS} = 2.5 \text{ V}, I_D = 4.5 \text{ A}$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.030                                                  | 0.045                                                  |                                                        |
| 9 <sub>fs</sub>         | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 6.3 A                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                                     |                                                        | S                                                      |
| <u> </u>                |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                      | 1                                                      | <u> </u>                                               |
| C <sub>iss</sub>        |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1200                                                   |                                                        | pF                                                     |
|                         | V <sub>DS</sub> = 10 V, V <sub>GS</sub> = 0 V, f = 1 MHz                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 220                                                    |                                                        |                                                        |
|                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                    |                                                        |                                                        |
|                         | $V_{DS} = 10 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 6.3 \text{ A}$                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                     | 33                                                     | nC                                                     |
| Q <sub>g</sub>          |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                     | 15                                                     |                                                        |
| Q <sub>as</sub>         | V <sub>DS</sub> = 10 V, V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 6.3 A                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.5                                                    |                                                        |                                                        |
|                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.7                                                    |                                                        |                                                        |
|                         | f = 1 MHz                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4                                                    |                                                        | Ω                                                      |
|                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                     | 25                                                     | - ns                                                   |
|                         | $V_{DD} = 10 \text{ V}, \text{ R}_1 = 1.5 \Omega$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                     | 15                                                     |                                                        |
|                         | $I_D \cong 6.7 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_q = 1 \Omega$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                                     | 55                                                     |                                                        |
| 1                       | C C                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                                     | 20                                                     |                                                        |
|                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                     | 15                                                     |                                                        |
|                         | $V_{DD} = 10 \text{ V. } \text{R}_{1} = 1.5 \Omega$                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                                     | 20                                                     |                                                        |
|                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                     | 40                                                     | 1                                                      |
| -()                     |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                     | 15                                                     |                                                        |
|                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                        |                                                        |
| 1 1                     | T <sub>C</sub> = 25 °C                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | 5.2                                                    | A                                                      |
|                         | ~                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                        |                                                        |
|                         | I <sub>S</sub> = 6.7 A, V <sub>GS</sub> = 0 V                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8                                                    | 1.2                                                    | V                                                      |
| + +                     | <u> </u>                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                        | ns                                                     |
|                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                        | nC                                                     |
|                         | $I_F = 6.7 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, \text{ T}_J = 25 ^\circ\text{C}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | 20                                                     | ns                                                     |
| -                       |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                        |                                                        |
|                         | I <sub>DSS</sub><br>I <sub>D(on)</sub><br>R <sub>DS(on)</sub>                                     | $\begin{array}{ c c c c c } I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V \\ \hline V_{DS} = 30 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 30 \ V, \ V_{GS} = 0 \ V, \ T_{J} = 55 \ ^{\circ}C \\ \hline V_{DS} = 30 \ V, \ V_{GS} = 0 \ V, \ T_{J} = 55 \ ^{\circ}C \\ \hline V_{DS} = 30 \ V, \ V_{GS} = 4.5 \ V \\ \hline V_{DS} = 5 \ V, \ V_{GS} = 4.5 \ V \\ \hline V_{GS} = 2.5 \ V, \ I_{D} = 6.3 \ A \\ \hline V_{DS} = 10 \ V, \ V_{DS} = 10 \ V, \ I_{D} = 6.3 \ A \\ \hline V_{DS} = 10 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz \\ \hline C_{rss} \\ \hline V_{DS} = 10 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz \\ \hline C_{rss} \\ \hline V_{DS} = 10 \ V, \ V_{GS} = 10 \ V, \ I_{D} = 6.3 \ A \\ \hline Q_{gd} \\ \hline V_{DS} = 10 \ V, \ V_{GS} = 10 \ V, \ I_{D} = 6.3 \ A \\ \hline Q_{gd} \\ \hline R_{g} \\ \hline R_{g} \\ \hline f = 1 \ MHz \\ \hline t_{d(on)} \\ t_{r} \\ \hline t_{d(on)} \\ t_{f} \\ \hline t_{d(off)} \\ \hline t_{f} \\ \hline T_{S} \\ \hline V_{DD} = 10 \ V, \ R_{L} = 1.5 \ \Omega \\ I_{D} \cong 6.7 \ A, \ V_{GEN} = 4.5 \ V, \ R_{g} = 1 \ \Omega \\ \hline V_{SD} \\ \hline I_{S} \\ \hline T_{C} = 25 \ ^{\circ}C \\ \hline I_{SM} \\ \hline V_{SD} \\ \hline I_{S} = 6.7 \ A, \ V_{GS} = 0 \ V \\ \hline t_{rr} \\ \hline Q_{rr} \\ \hline t_{a} \\ \hline I_{F} = 6.7 \ A, \ dI/dt = 100 \ A/\mus, \ T_{J} = 25 \ ^{\circ}C \\ \hline t_{a} \\ \hline \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

a. Pulse test; pulse width  $\leq$  300 µs, duty cycle  $\leq$  2 %


b. Guaranteed by design, not subject to production testing.

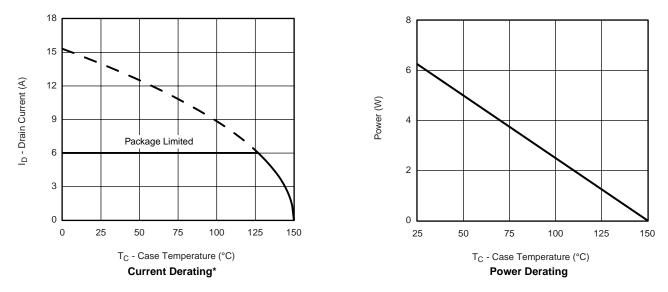

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

emi



#### TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

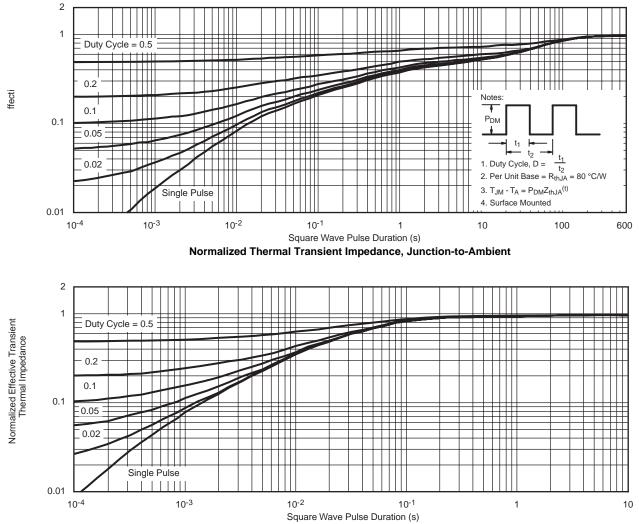





#### TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



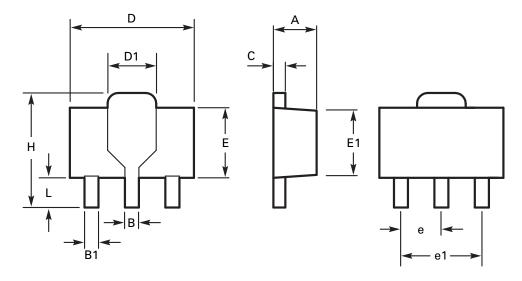



#### TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



\* The power dissipation  $P_D$  is based on  $T_{J(max)}$  = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

# Www.VBsemi.tw


#### TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



Normalized Thermal Transient Impedance, Junction-to-Foot



### Package outline - SOT89



| DIM | Millimeters |      | Inches |       | DIM | Millimeters |      | Inches    |       |
|-----|-------------|------|--------|-------|-----|-------------|------|-----------|-------|
|     | Min         | Max  | Min    | Max   |     | Min         | Max  | Min       | Max   |
| Α   | 1.40        | 1.60 | 0.550  | 0.630 | E   | 2.29        | 2.60 | 0.090     | 0.102 |
| В   | 0.44        | 0.56 | 0.017  | 0.022 | E1  | 2.13        | 2.29 | 0.084     | 0.090 |
| B1  | 0.36        | 0.48 | 0.014  | 0.019 | е   | 1.50 BSC    |      | 0.059 BSC |       |
| С   | 0.35        | 0.44 | 0.014  | 0.017 | e1  | 3.00 BSC    |      | 0.118 BSC |       |
| D   | 4.40        | 4.60 | 0.173  | 0.181 | Н   | 3.94        | 4.25 | 0.155     | 0.167 |
| D1  | 1.62        | 1.83 | 0.064  | 0.072 | L   | 0.89        | 1.20 | 0.035     | 0.047 |

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches



# Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.tw)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

# **Material Category Policy**

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.tw)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.