

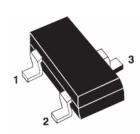
Dual Transient Voltage Suppressors Array for ESD Protection

General Description

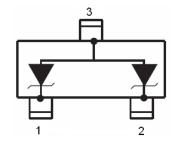
The SLSOT Series is a dual monolithic voltage suppressor designed to protect components which are connected to data and transmission lines against ESD. It clamps the voltage just above the logic level supply for positive transients and to a diode drop below ground for negative transients. It can also work as bidirectional suppressor by connecting only pin1 and 2.

Applications

- Computers
- Printers
- Communication systems

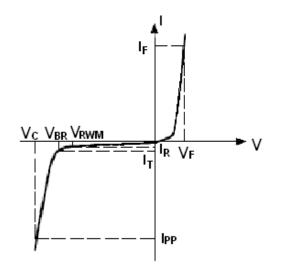

Features

- 2 Unidirectional Transil functions
- Low leakage current: I_R max< 20 μA at V_{RM}
- 300W peak pulse power(8/20µs)
- Transient protection for data lines as per


Complies with the following standards IEC61000-4-2

Level 4 15 kV (air discharge) 8 kV(contact discharge) MIL STD 883E - Method 3015-7 Class 3 25 kV HBM (Human Body Model)

Functional diagram



Absolute Ratings (T _{amb} =25°C)						
Symbol	Parameter	Value	Units			
P _{PP}	Peak Pulse Power (t₀ = 8/20µs)	350	W			
T_L	Maximum lead temperature for soldering during 10s	260	°C			
T _{stg}	Storage Temperature Range	-55 to +155	°C			
T _{op}	Operating Temperature Range	-40 to +125	°C			
T_j	Maximum junction temperature	150	°C			
V _{PP}	Electrostatic discharge IEC61000-4-2 air discharge IEC61000-4-2 contact discharge	15 8	kV			

Electrical Parameter

Symbol	Parameter					
I _{PP}	Maximum Reverse Peak Pulse Current					
V _C	Clamping Voltage @ I _{PP}					
V_{RWM}	Working Peak Reverse Voltage					
I _R	Maximum Reverse Leakage Current @ V _{RWM}					
I _T	Test Current					
V_{BR}	Breakdown Voltage @ I _T					

Electrical Characteristics

	V _{BR}						С	
Part Numbers	Min.	Тур.	Max.	I _T	V_{RWM}	I _R	Typ. 0v bias	
	V	V	V	mA	V	μΑ	pF	
SLSOT04C	5.0	5.6	6.2	1	4.0	1	30	
SLSOT05C	6.0	6.7	7.4	1	5.0	1	30	
SLSOT12C	13.3	14.0	14.7	1	12.0	1	25	
SLSOT15C	16.7	17.4	18.1	1	15.0	1	25	
SLSOT24C	26.7	28.2	29.6	1	24.0	1	20	

^{1).8/20} waveform used. (see fig2.)

Typical Characteristics

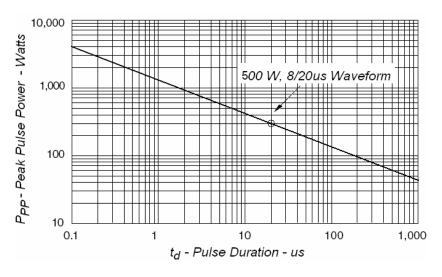
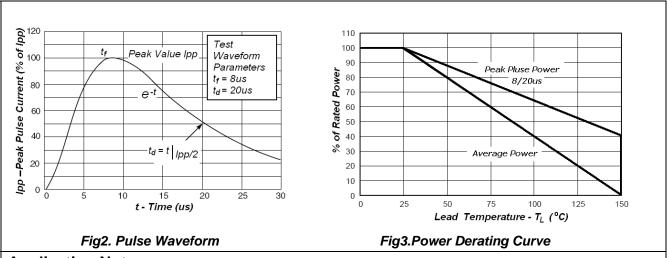
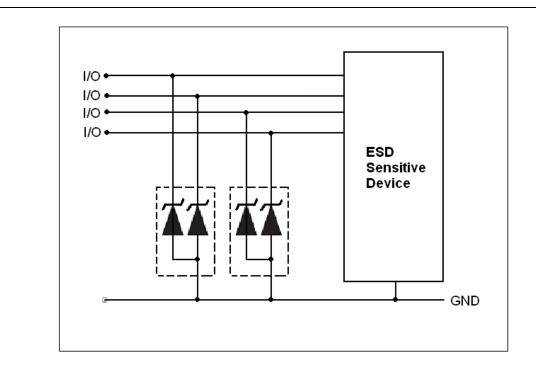



Fig1. Peak Pulse Power VS Pulse Time



Application Note

Electrostatic discharge (ESD) is a major cause of failure in electronic systems. Transient Voltage Suppressors (TVS) are an ideal choice for ESD protection. They are capable of clamping the incoming transient to a low enough level such that damage to the protected semiconductor is prevented.

Surface mount TVS arrays offer the best choice for minimal lead inductance. They serve as parallel protection elements, connected between the signal line to ground. As the transient rises above the operating voltage of the device, the TVS array becomes a low impedance path diverting the transient current to ground.

The tiny SOT-23 package allows design flexibility in the design of high density boards where the space saving is at a premium. This enables to shorten the routing and contributes to hardening against ESD.

SOT-23 mechanical data

Dim	Millimeters				
ווווט	Min	TYP	Max		
Α	1.00	1.20	1.40		
A1	0	0.05	0.10		
A2	1.00	1.15	1.30		
b	0.35	0.40	0.50		
С	0.10	0.15	0.20		
D	2.70	2.90	3.10		
Е	2.40	2.60	2.80		
E1	1.40	1.50	1.60		
е	0.85	1.00	1.15		
e1	1.80	1.90	2.00		
L1	0.40				
q	0°	5°	10°		
S	0.45	0.50	0.55		