Hex inverting Schmitt trigger

Rev. 1 — 9 July 2012

Product data sheet

1. General description

The 74AHC14-Q100; 74AHCT14-Q100 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard No. 7A.

The 74AHC14-Q100; 74AHCT14-Q100 provides six inverting buffers with Schmitt trigger action. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Balanced propagation delays
- All inputs have Schmitt trigger actions
- Inputs accept voltages higher than V_{CC}
- Input levels:
 - For 74AHC14-Q100: CMOS level
 - For 74AHCT14-Q100: TTL level
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pf, R = 0 Ω)
- Multiple package options

Hex inverting Schmitt trigger

3. Ordering information

Table 1. Ordering	information								
Type number	Package								
	Temperature range	Name	Description	Version					
74AHC14-Q100									
74AHC14D-Q100	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1					
74AHC14PW-Q100	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1					
74AHC14BQ-Q100	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1					
74AHCT14-Q100									
74AHCT14D-Q100	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1					
74AHCT14PW-Q100	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1					
74AHCT14BQ-Q100	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1					

4. Functional diagram

Hex inverting Schmitt trigger

5. Pinning information

5.1 Pinning

74AHC14-Q100 74AHCT14-Q100 VCC terminal 1 ₹ 74AHC14-Q100 index area 4 -74AHCT14-Q100 2) 1Y (13 6A 14 VCC 3 (12 6Y 1A 1 2A 1Y 2 13 6A 4) 2Y (11 5A 12 6Y 2A 3 ЗA 5) (10 5Y GND⁽¹⁾ 4 11 5A 2Y 3Y 6) (9 4A 10 5Y ЗA 5 (00) 3Y 6 9 4A GND ₹ aaa-003136 GND 7 8 4Y aaa-003135 Transparent top view (1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to GND. Pin configuration SO14 and TSSOP14 Pin configuration DHVQFN14 Fig 4. Fig 5.

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
1A	1	data input 1
1Y	2	data output 1
2A	3	data input 2
2Y	4	data output 2
ЗA	5	data input 3
3Y	6	data output 3
GND	7	ground (0 V)
4Y	8	data output 4
4A	9	data input 4
5Y	10	data output 5
5A	11	data input 5
6Y	12	data output 6
6A	13	data input 6
V _{CC}	14	supply voltage

Hex inverting Schmitt trigger

6. Functional description

Table 3. Function table^[1]

Input	Output
nA	nY
L	Н
Н	L

[1] H = HIGH voltage level;

L = LOW voltage level.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	V _I < -0.5 V	<u>[1]</u> –20	-	mA
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> –20	+20	mA
I _O	output current	$V_{O} = -0.5 \text{ V}$ to ($V_{CC} + 0.5 \text{ V}$)	-25	+25	mA
I _{CC}	supply current		-	+75	mA
I _{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$	[2] _	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

For SO14 packages: above 70 °C the value of P_{tot} derates linearly at 8 mW/K.
 For TSSOP14 packages: above 60 °C the value of P_{tot} derates linearly at 5.5 mW/K.
 For DHVQFN14 packages: above 60 °C the value of P_{tot} derates linearly at 4.5 mW/K.

8. Recommended operating conditions

Table 5.	Operating conditions					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
74AHC14	-Q100					
V _{CC}	supply voltage		2.0	5.0	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
74AHCT1	4-Q100					
V _{CC}	supply voltage		4.5	5.0	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C

74AHC_AHCT14_Q100
Product data sheet

Hex inverting Schmitt trigger

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		−40 °C t	to +85 °C	–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74AHC1	4-Q100									
V _{он}	HIGH-level	$V_I = V_{T+} \text{ or } V_{T-}$								
	output voltage	I_{O} = -50 μ A; V_{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -50 \ \mu\text{A}; \ V_{CC} = 3.0 \ \text{V}$	2.9	3.0	-	2.9	-	2.9	-	V
	$I_O = -50 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	4.5	-	4.4	-	4.4	-	V	
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.58	-	-	2.48	-	2.40	-	V
		I_{O} = -8.0 mA; V_{CC} = 4.5 V	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level	$V_I = V_{T+} \text{ or } V_{T-}$								
	output voltage	$I_0 = 50 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 50 \ \mu A; \ V_{CC} = 3.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
	$I_{O} = 50 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V	
		I_0 = 4.0 mA; V_{CC} = 3.0 V	-	-	0.36	-	0.44	-	0.55	V
		I_{O} = 8.0 mA; V_{CC} = 4.5 V	-	-	0.36	-	0.44	-	0.55	V
I	input leakage current	$V_1 = 5.5 V \text{ or GND};$ $V_{CC} = 0 V \text{ to } 5.5 V$	-	-	0.1	-	1.0	-	2.0	μA
сс	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	2.0	-	20	-	40	μA
Cı	input capacitance		-	3	10	-	10	-	10	рF
Co	output capacitance		-	4	-	-	-	-	-	рF
74AHCT	T14-Q100									
√ _{ОН}	HIGH-level	$V_{I} = V_{T+} \text{ or } V_{T-}$								
	output voltage	$I_{O} = -50 \ \mu A; V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level	$V_{I} = V_{T+}$ or V_{T-}								
	output voltage	$I_{O} = 50 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
lı	input leakage current		-	-	0.1	-	1.0	-	2.0	μA
СС	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	2.0	-	20	-	40	μA
VI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$; other pins at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 4.5 \text{ V}$ to 5.5 V	-	-	1.35	-	1.5	-	1.5	m
CI	input capacitance		-	3	10	-	10	-	10	рF
Co	output capacitance		-	4	-	-	-	-	-	рF

Hex inverting Schmitt trigger

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 7</u>.

-											
Symbol	Parameter	Conditions			25 °C		-40 °C ∱	to +85 °C	–40 °C t	to +125 °C	Unit
				Min	Typ[1]	Max	Min	Max	Min	Max	
74AHC14	4-Q100	"									
t _{pd}	propagation	nA to nY; see Figure 6	[2]								
	delay	V_{CC} = 3.0 V to 3.6 V									
		C _L = 15 pF		-	4.3	12.8	1.0	15.0	1.0	16.0	ns
		C _L = 50 pF		-	5.8	16.3	1.0	18.0	1.0	20.5	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	3.2	8.6	1.0	10.0	1.0	11.0	ns
		C _L = 50 pF		-	4.2	10.6	1.0	12.0	1.0	13.5	ns
C _{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz}; V_1 = \text{GND to } V_{\text{CC}}$	<u>[3]</u>	-	10	-	-	-	-	-	pF
74AHCT	14-Q100										
t _{pd}	propagation	nA to nY; see Figure 6	[2]								
	delay	V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	4.0	7.0	1.0	8.0	1.0	9.0	ns
		C _L = 50 pF		-	5.4	8.0	1.0	9.0	1.0	10.0	ns
C _{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz}; V_1 = \text{GND to } V_{\text{CC}}$	<u>[3]</u>	-	12	-	-	-	-	-	pF

[1] Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V and V_{CC} = 5.0 V).

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

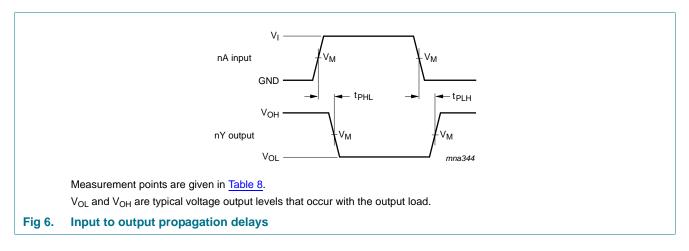
[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

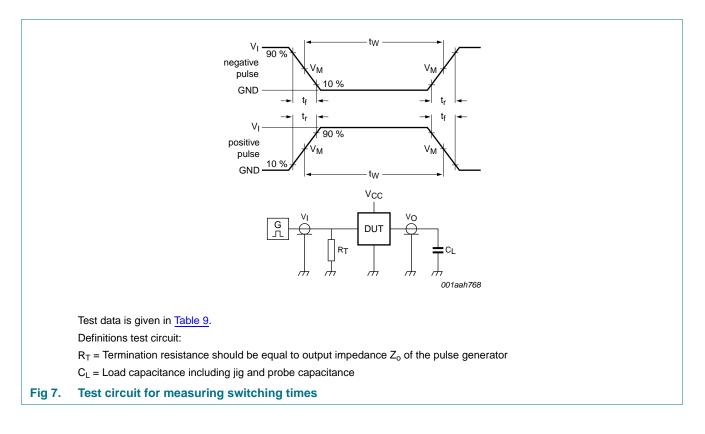
f_o = output frequency in MHz;

 C_L = output load capacitance in pF;


 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.


Hex inverting Schmitt trigger

11. Waveforms

Table 8.Measurement points

Туре	Input	Output
	V _M	V _M
74AHC14-Q100	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
74AHCT14-Q100	1.5 V	$0.5 imes V_{CC}$

Hex inverting Schmitt trigger

Table 9. Test data Туре Input Load Test VI CL t_r, t_f 74AHC14-Q100 ≤ 3.0 ns 50 pF, 15 pF V_{CC} t_{PLH}, t_{PHL} 74AHCT14-Q100 3.0 V ≤ 3.0 ns 50 pF, 15 pF t_{PLH}, t_{PHL}

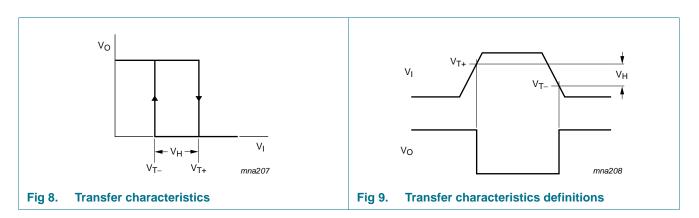
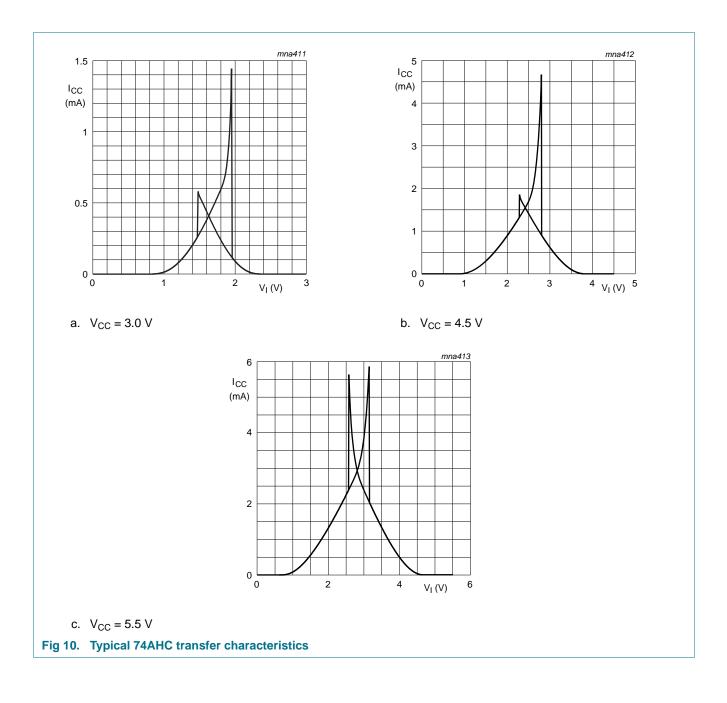

12. Transfer characteristics

Table 10. Transfer characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); see Figure 8 and Figure 9.

	-	<u> </u>	•			10				<u> </u>	1
Symbol	Parameter	Conditions			25 °C		−40 °C t	to +85 °C	–40 °C t	to +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max		
74AHC1	4-Q100										
V _{T+}	positive-going	V_{CC} = 3.0 V		-	-	2.2	-	2.2	-	2.2	V
	threshold voltage	V_{CC} = 4.5 V		-	-	3.15	-	3.15	-	3.15	V
	voltage	V_{CC} = 5.5 V		-	-	3.85	-	3.85	-	3.85	V
V _{T-}	negative-going	V_{CC} = 3.0 V		0.9	-	-	0.9	-	0.9	-	V
	threshold voltage	V_{CC} = 4.5 V		1.35	-	-	1.35	-	1.35	-	V
vollage	voltage	V_{CC} = 5.5 V		1.65	-	-	1.65	-	1.65	-	V
V _H	hysteresis	V_{CC} = 3.0 V		0.3	-	1.2	0.3	1.2	0.25	1.2	V
	voltage	V_{CC} = 4.5 V		0.4	-	1.4	0.4	1.4	0.35	1.4	V
		V_{CC} = 5.5 V		0.5	-	1.6	0.5	1.6	0.45	1.6	V
74AHCT	14-Q100										
V _{T+}	positive-going	V_{CC} = 4.5 V		-	-	1.9	-	1.9	-	1.9	V
	threshold voltage	$V_{CC} = 5.5 V$		-	-	2.1	-	2.1	-	2.1	V
V _{T-}	negative-going	V_{CC} = 4.5 V		0.5	-	-	0.5	-	0.5	-	V
	threshold voltage	$V_{CC} = 5.5 V$		0.6	-	-	0.6	-	0.6	-	V
V _H	hysteresis	V_{CC} = 4.5 V		0.4	-	1.4	0.4	1.4	0.35	1.4	V
	voltage	$V_{CC} = 5.5 V$		0.4	-	1.5	0.4	1.5	0.35	1.5	V

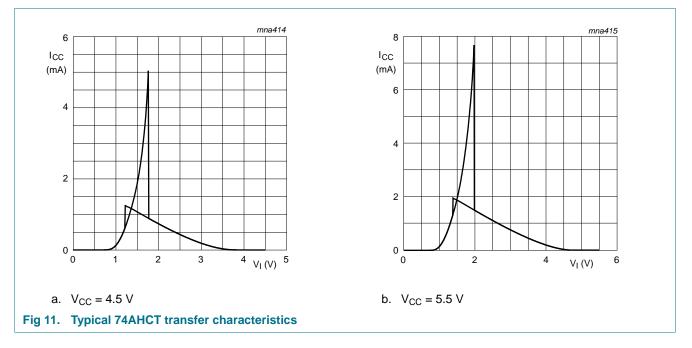
13. Transfer characteristics waveforms

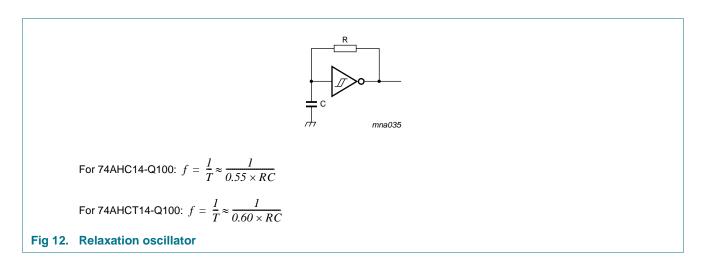


74AHC_AHCT14_Q100
Product data sheet

Nexperia

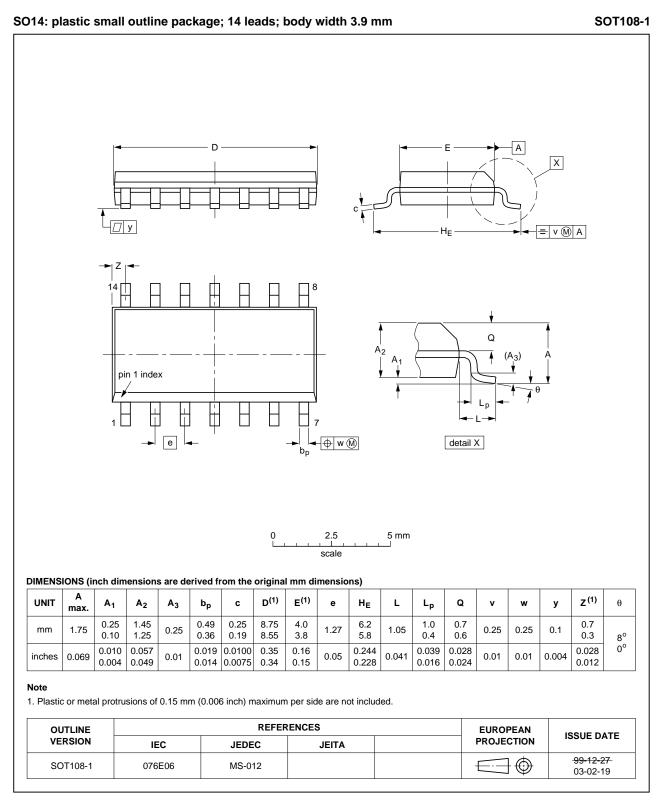
74AHC14-Q100; 74AHCT14-Q100


Hex inverting Schmitt trigger


Nexperia

74AHC14-Q100; 74AHCT14-Q100

Hex inverting Schmitt trigger



14. Application information

Hex inverting Schmitt trigger

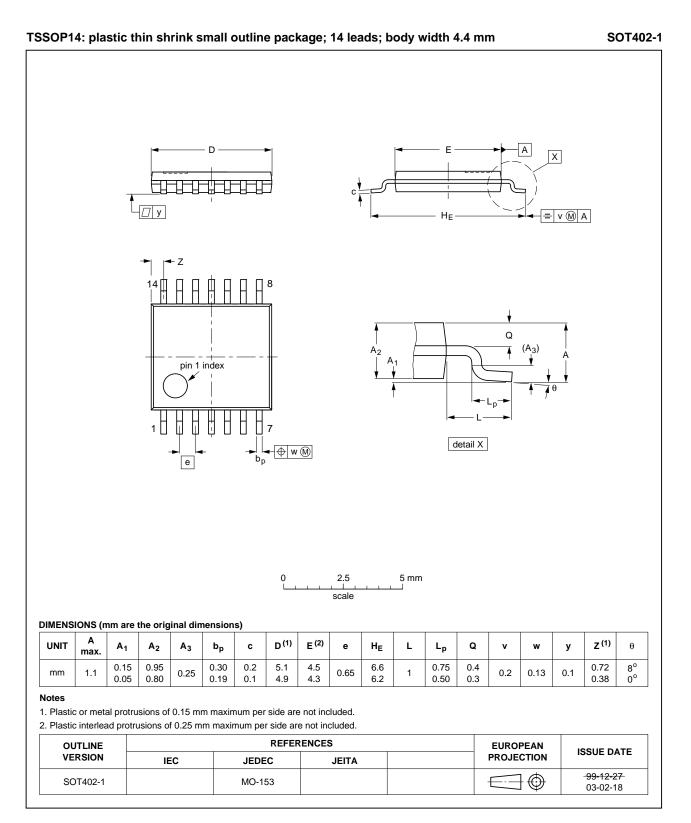

15. Package outline

Fig 13. Package outline SOT108-1 (SO14)

All information provided in this document is subject to legal disclaimers.

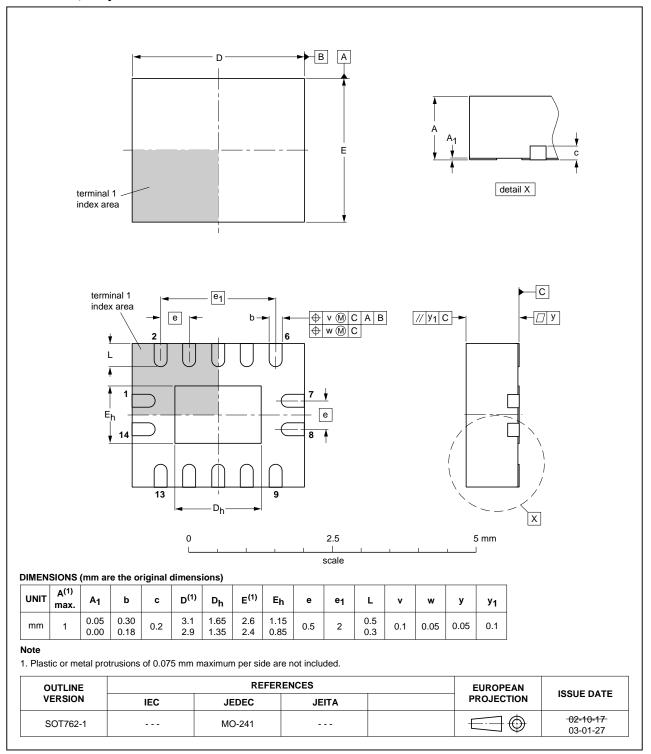

Hex inverting Schmitt trigger

Fig 14. Package outline SOT402-1 (TSSOP14)

All information provided in this document is subject to legal disclaimers.

Hex inverting Schmitt trigger

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

Fig 15. Package outline SOT762-1 (DHVQFN14)

All information provided in this document is subject to legal disclaimers.

Hex inverting Schmitt trigger

16. Abbreviations

Table 11.	Abbreviations
Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
LSTTL	Low-power Schottky Transistor-Transistor Logic
MM	Machine Model
MIL	Military

17. Revision history

Table 12. Revision history	,			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74AHC_AHCT14_Q100 v.1	20120709	Product data sheet	-	-

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been gualified for use in automotive

applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

```
74AHC_AHCT14_Q100
```

Hex inverting Schmitt trigger

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Nexperia

74AHC14-Q100; 74AHCT14-Q100

Hex inverting Schmitt trigger

20. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning 3
5.2	Pin description 3
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 4
9	Static characteristics 5
10	Dynamic characteristics 6
11	Waveforms 7
12	Transfer characteristics 8
13	Transfer characteristics waveforms
14	Application information 10
15	Package outline 11
16	Abbreviations 14
17	Revision history 14
18	Legal information 15
18.1	Data sheet status 15
18.2	Definitions 15
18.3	Disclaimers
18.4	Trademarks 16
19	Contact information 16
20	Contents 17

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

 74AHCT14D
 74AHC14BQ,115
 74AHC14D,112
 74AHC14D,118
 74AHC14PW,112
 74AHC14PW,118

 74AHCT14BQ,115
 74AHCT14D,112
 74AHCT14D,118
 74AHCT14PW,112
 74AHCT14PW,118
 74AHCT14PW,118

 Q100,118
 74AHC14BQ-Q100,115
 74AHCT14BQ-Q100,111
 74AHCT14PW-Q100,111
 74AHC14D-Q100,118

 74AHC14PW-Q100,118
 74AHCT14APWJ
 74AHCT14APWJ
 74AHC14D-Q100,118