

APPROVAL SHEET

Product Name High Quality Anti-Sulfurized Thick Film Chip Resistors

Part Name NQ01~NQ12 Series

Approved Nana Chen

Checked Huiling Gao

Prepared Haiyan Chen

File NO. YHT-01-039

Edition 1

Uniroyal Electronics Global Co.,Ltd Shenzhen Branch

Building 8, Jiuwei Industrial Zone, Xixiang Town, Bao'An District ,Shenzhen , Guangdong, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

KunShan Funtex Electronics Technology Co., Ltd.

Ticrom Technology (ShenZhen) Co., Ltd.

Aeon Technology Corporation

Brands RoyalOhm UniOhm

1. Scope

- 1.1 This specification for approve relates to the High Quality Anti-Sulfurized Thick Film Chip Resistor manufactured by UNI-ROYAL.
- 1.2 AEC-Q200 qualifed
- 1.3 Suitable for reflow & wave soldering
- 1.4 Application IPAD, LED lamps, Intelligent home appliances, Medical equipment, kinds of industrial control devices &industrial supplies

2. Part No. System

Part No. includes 14 codes shown as below:

- 2.1 1st~4th codes: Part name. E.g.: NQ02,NQ03,NQ05,NQ06,NQ07,NQ10,NQ12
- 2.2 5th~6th codes: Power rating.

E.g.: W=Normal Size		"1~	"1~G" = "1~16"							
Wattage	1/32	3/4	1/2	1/3	1/4	1/8	1/10	1/16	1/20	1
Normal Size	WH	07	W2	W3	W4	W8	WA	WG	WM	1W

If power rating is lower or equal than 1 watt, 5th code would be "W" and 6th code would be a number or letter.

E.g.: WA=1/10W

W4=1/4W

2.3 7th code: Tolerance. E.g.: D= $\pm 0.5\%$ F= $\pm 1\%$

G=±2%

J=±5%

 $K = \pm 10\%$

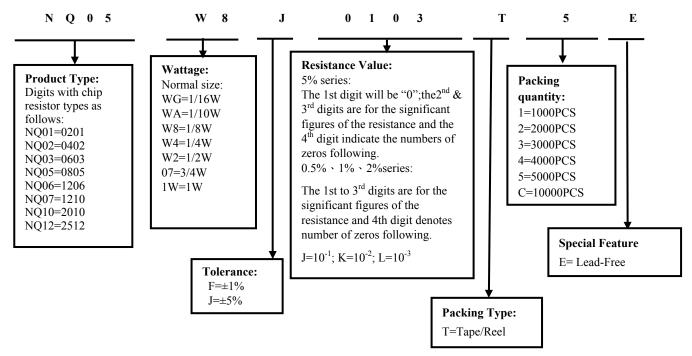
2.4 8th~11th codes: Resistance Value.

- 2.4.1 If value belongs to standard value of \geq 5% series, 8^{th} code would be zero, $9^{th} \sim 10^{th}$ codes are significant figures of the resistance and 11^{th} code is the power of ten.
- 2.4.2 If value belongs to standard value of $\leq 2\%$ series, $8^{th} \sim 10^{th}$ codes are significant figures of the resistance, and 11^{th} code is the power of ten.
- 2.4.3 11th codes listed as following:

$$0=10^{0}1=10^{1}$$
 $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$ $6=10^{6}$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$

- 2.5 12th~14th codes.
- 2.5.1 12th code: Packaging Type. E.g.: C=Bulk T=Tape/Reel
- 2.5.2 13th code: Standard Packing Quantity.

 $4 \hspace{-0.05cm} -4 \hspace{-0.05cm} -4 \hspace{-0.05cm} -4 \hspace{-0.05cm} -0 \hspace{-0.05cm} -$


Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs

2.5.3 14th code: Special features.

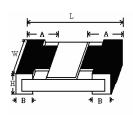
E = Environmental Protection, Lead Free, or Standard type.

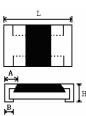
3. Ordering Procedure

_(Example: NS05 1/8W ±5% 10KΩ T/R-5000)

4. Marking

- (1) Normally, the making of NQ01,NQ02 resistors as following
- (2) Normally, the making of 0Ω NQ03, 0Ω NQ05, 0Ω NQ06, 0Ω NQ07, 0Ω NQ10, 0Ω NQ12, resistors as following
- (3) ±2%,±5%Tolerance:The first two digits are significant figures of resistance and the third denotes number of zeros following
- (4) $\pm 0.5\% \cdot \pm 1\%$ Tolerance: 4 digits, first three digits are significant; forth digit is number of zeros. Letter r is decimal point.



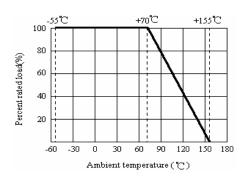


5. Dimension

_	Type		n(mm)			
		L	W	H	A	В
	NQ01	0.60 ± 0.03	0.30 ± 0.03	0.23±0.03	0.12±0.05	0.15±0.05
	NQ02	1.00±0.10	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.25±0.10
	NQ03	1.60±0.10	0.80 ± 0.10	0.45±0.10	0.30±0.20	0.30±0.20
Η	NQ05	2.00±0.15	1.25+0.15/-0.10	0.55±0.10	0.40±0.20	0.40±0.20
	NQ06	3.10±0.15	1.55+0.15/-0.10	0.55±0.10	0.45±0.20	0.45±0.20
	NQ07	3.10±0.10	2.60±0.20	0.55±0.10	0.50±0.25	0.50±0.20
	NQ10	5.00±0.10	2.50±0.20	0.55±0.10	0.60±0.25	0.50±0.20
	NQ12	6.35±0.10	3.20±0.20	0.55±0.10	0.60±0.25	0.50±0.20

6. Resistance Range

Tarre	Power Rating	Resistance Range					
Type	at 70°C	1%	5%				
NQ01	1/20W	1Ω-10ΜΩ	1Ω-10ΜΩ				
NQ02	1/16W	1Ω-10ΜΩ	1Ω-10ΜΩ				
NQ03	1/10W	1Ω-10ΜΩ	1Ω-10ΜΩ				
NQ05	1/8W	1Ω - 10 M Ω	1Ω - 10 M Ω				
NQ06	1/4W	1Ω - 10 M Ω	1Ω - 10 M Ω				
NQ07	1/2W	1Ω - 10 M Ω	1Ω - 10 M Ω				
NQ10	3/4W	1Ω-10ΜΩ	1Ω-10ΜΩ				
NQ12	1W	1Ω - 10 M Ω	1Ω - 10 M Ω				


7. Ratings

Туре	Max. Working Voltage	Max. Overload Voltage	Dielectric withstanding Voltage	Resistance Value of Jumper	Rated Current of Jumper	Max. Overload Current of Jumper	Operating Temperature
NQ01	25V	50V	/	<50mΩ	0.5A	1A	-55℃~155℃
NQ02	50V	100V	100V	<50mΩ	1A	2A	-55℃~155℃
NQ03	75V	150V	300V	<50mΩ	1A	2A	-55℃~155℃
NQ05	150V	300V	500V	<50mΩ	2A	5A	-55℃~155℃
NQ06	200V	400V	500V	<50mΩ	2A	10A	-55°C~155°C
NQ07	200V	500V	500V	<50mΩ	2A	10A	-55°C~155°C
NQ10	200V	500V	500V	<50mΩ	2A	10A	-55°C~155°C
NQ12	200V	500V	500V	<50mΩ	2A	10A	-55°C~155°C

8. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55 $^{\circ}$ C to 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C, the load shall be derated as shown in figure 1

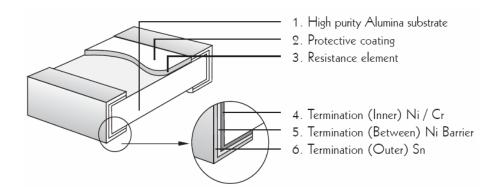
Figure 1

Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working

Voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$


Where: RCWV commercial-line frequency and waveform (Volt.)

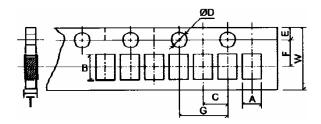
P = power rating (WATT.) R = nominal resistance (OHM)

In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value.

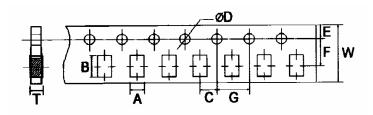
The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less

9. Structure

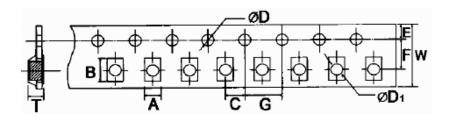
10. Performance Specification


Characteristic	Limits	Ref. Standards	Test Method
Operational life	±5%: ±(3%+0.1Ω)Max. ±1%: ±(1%+0.1Ω)Max.	MIL-STD-202	1,000 hours at 125°C,36% power , derated voltage applied for 1.5 hours on,0.5 hour off, Measurement at 24 ± 4 hours after test conclusion.
	<100mΩ		Apply to rate current for 0Ω
Electrical Characterization	$\begin{split} &1\Omega \leqq R \le 10\Omega: \ \pm 400 PPM/^{\circ}C \\ &10\Omega < R \ \leqq 100\Omega: \ \pm 200 PPM/^{\circ}C \\ &100\Omega < R \leqq 10M\Omega: \ \pm 100 PPM/^{\circ}C \\ &NS01:10\Omega < R \leqq 10M\Omega: \ \pm 200 PPM/^{\circ}C \end{split}$	User Spec	Parametrically test per lot and sample size requirements, summary to show Min, Max, Mean and Standard deviation at room as well as Min and Max operating temperatures.
Short-time overload	$\pm 1\%$: $\pm (1\%+0.1\Omega)$ Max. $\pm 5\%$: $\pm (2\%+0.1\Omega)$ Max.	JIS-C-5201& JIS- C-5202	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5 seconds
	<50mΩ		Apply max Overload current for 0Ω
External Visual	No Mechanical Pamage	MIL-STD-883 Method 2009	Electrical test not required.Inspect device construction, marking and workmanship
Physical Dimension	Reference 2.0 Dimension Standards	JESD22 MH Method JB- 100	Verify physical dimensions to the applicable device detail specification. Note: User(s) and Suppliers spec. Electrical test not required.
Resistance to Solvent	Marking Unsmeared	MIL-STD-202 Method 215	Note: Add Aqueous wash chemical – OKEM Clean or equivalent. Do not use banned solvents.
Terminal Strength	Not broken	JIS-C-6429	Force of 1.8kg for 60 seconds.
High Temperature	$\pm (1\%+0.1\Omega)$ Max.	MIL-STD-202	1000hrs. @T=155°C.Unpowered. Measurement at 24±2 hours after test conclusion.
Exposure (Storage)	<50mΩ	Method 108	Apply to rate current for 0Ω
Temperature Cycling	$\pm (1\% + 0.1\Omega)$ Max.	JESD22 Method JA-104	1000 Cycles (-55°C to +155°C). Measurement at 24 \pm 2 hours after test conclusion.
Cycling	<50mΩ	JA-104	Apply to rate current for 0Ω
Mechanical Shock	$\pm (1\% + 0.1\Omega)$ Max.	MIL-STD-202 Method 213	Wave Form: Tolerance for half sine shock pulse. Peak value is 100g's. Normal duration (D) is 6ms, velocity 12.3ft/s 100Hz.
Vibration	±(1%+0.1Ω)Max.	MIL-STD-202 Method 204	5g's for 20 min., 12cycle each of 3 orientations. Note: Use 8"*5"PCB. 031" thick 7 secure points onone long side and 2 secure points at corners of opposite sides. Parts mounted within 2' from any secure point. Test from 10-2000Hz.
Solderability	95% coverage Min.	J-STD-002	For both leaded & SMD. Electrical test not required. Magnification 50X. Conditions: a) Method B 4hrs at 155°C dry heat, the dip in bath with 245°C,5s. b) Method D: at 260°C, 60s.
Flammability	No ignition of the tissue paper or scorching or the pinewood board	UL-94	V-0 or V-1 are acceptable. Electrical test not required.
Board Flex	$\pm (1\% + 0.05\Omega)$ Max.	JIS-C-6429	3mm (Min.),60s
Dodiu Fica	<50mΩ	910-C-0 1 27	Apply to rate current for 0Ω
Flame Retardance	No flame	AEC-Q200-001	Temperature sensing at 500°C, Voltage power subjected to 32VDC current clamped up to 500VDC and decreased in 1.0VDC/hour.
Resistance to Soldering Heat	±(1%+0.05Ω)Max.	MIL-STD-202 Method 210	Condition B No per-heat of samples. Note: Single Wave Solder-Procedure 2 for SMD and Procedure 1 for Leaded with solder within 1.5mm of device body.
<i>y</i>			

^{*} Sulfuration test: Soaked in industrial oil with sulfur substance 3.5% contained 105°C ±3°C 500h

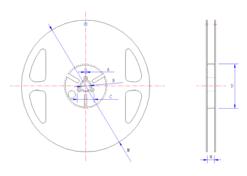

 $\triangle R \leq \pm (5\% + 0.1 \Omega)$

11. Packing of Surface Mount Resistors 11.1 Dimension of Paper Taping :(Unit: mm)



Type	A	В	C ±0.05	+0.1 ΦD -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	Т
NQ01	0.40±0.05	0.70±0.05	2.0	1.5	1.75	3.50	4.0	8.0	0.42±0.1
NQ02	0.65 ±0.1	1.2±0.1	2.0	1.5	1.75	3.5	4.0	8.0	0.42±0.05

Туре	A ±0.2	B ±0.2	C ±0.05	+0.1 ΦD -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.1
NQ03	1.10	1.90	2.0	1.5	1.75	3.5	4.0	8.0	0.67
NQ05	1.65	2.40	2.0	1.5	1.75	3.5	4.0	8.0	0.81
NQ06	2.00	3.60	2.0	1.5	1.75	3.5	4.0	8.0	0.81
NQ07	2.80	3.50	2.0	1.5	1.75	3.5	4.0	8.0	0.75


11.2 Dimension of Embossed Taping:

Туре	A ±0.2	B ±0.2	C ±0.05	+ 0.1 \$\phi D \] - 0	+0.25 \$\phi D1 \\ -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.1
NQ10	2.90	5.60	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
NQ12	3.50	6.70	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00

11.3 Dimension of Reel: Unit: mm

Туре	Taping	Qty/Reel	A ±0.5	B ±0.5	C ±0.5	D ±1	M ±2	W ±1
NQ01	Paper	10,000pcs	2.0	13.0	21.0	60.0	178	10
NQ02	Paper	10,000pcs	2.0	13.0	21.0	60.0	178	10
NQ03	Paper	5,000pcs	2.0	13.0	21.0	60.0	178	10
NQ05	Paper	5,000pcs	2.0	13.0	21.0	60.0	178	10
NQ06	Paper	5,000pcs	2.0	13.0	21.0	60.0	178	10
NQ07	Paper	5,000pcs	2.0	13.0	21.0	60.0	178	10
NQ10	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178	13.8
NQ12	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178	13.8

12. <u>Note</u>

12.1. UNI-ROYAL recommend the storage condition temperature: $15\,^{\circ}\text{C} \sim 35\,^{\circ}\text{C}$, humidity :25%~75%.

(Put condition for individual product). Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.

- 12.2. Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.
 - Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 12.3. Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic.
 - b. Storage in direct sunshine · rain and snow or condensation.

13. Record

Version	Description of amendment	Page	Date	Amended by	Checked by

Jan. 03,2018 V.1 www.uniohm.com Page 7/7